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Abstract—Three-dimensional ultrasound can be an effective
imaging modality for image-guided interventions since it enables
visualization of both the instruments and the tissue. For robotic
applications, its realtime frame rates create the potential for
image-based instrument tracking and servoing. These capabilities
can enable improved instrument visualization, compensation for
tissue motion as well as surgical task automation. Continuum
robots, whose shape comprises a smooth curve along their
length, are well suited for minimally invasive procedures. Existing
techniques for ultrasound tracking, however, are limited to
straight, laparoscopic-type instruments and thus are not applica-
ble to continuum robot tracking. Toward the goal of developing
tracking algorithms for continuum robots, this paper presents
a method for detecting a robot comprised of a single constant
curvature in a 3D ultrasound volume. Computational efficiency
is achieved by decomposing the six-dimensional circle estima-
tion problem into two sequential three-dimensional estimation
problems. Simulation and experiment are used to evaluate the
proposed method.

I. INTRODUCTION

Automated detection and tracking of robotic instruments is

an important problem in minimally invasive surgery. Proce-

dures throughout the body (e.g., in the heart, brain and kid-

neys) make substantial use of multiple imaging modalities to

pre-operatively locate surgical targets and to intra-operatively

guide surgical tools. By automatically detecting and tracking

instruments in these images, it becomes possible to provide

enhanced navigational cues to the clinician in the form of

image overlays or virtual fixtures. It also becomes possible

to employ image-based servoing to perform certain tasks of a

procedure using medical robotics.

Current medical imaging techniques include CT, PET, MRI,

fluoroscopy and ultrasound, etc, among which fluoroscopy

and ultrasound are widely available realtime imaging systems.

While there has been recent progress in the realtime use of

MRI [1], [2] to guide robotic surgical procedures, such systems

are currently not widely available. Concurrently, however,

realtime three-dimensional (3D) ultrasonography has become

available for clinical use and its availability is increasing

owing to its advantages for interventional tasks [3], [4].

Compared with MRI or CT, ultrasound imaging has a number

of advantages, including affordability, portability, patient and

clinician safety owing to its use of nonionizing radiation and

realtime 3D volumetric imaging of 20 frames per second. The
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main drawbacks of ultrasonography in contrast to MR and CT

imaging are a lower spatial resolution and imaging artifacts.

With the increasing availability of realtime 3D ultrasound,

a number of researchers have begun to develop imaging

algorithms for enhanced instrument navigation during inter-

ventional procedures. For example, tracking algorithms have

been developed for instruments consisting of a straight shaft

for use in intracardiac surgery [5], [6], [7], liver biopsies [8],

prostate brachytherapy [9] and ex-vivo phantom experiments

[10].

In addition to tracking handheld instruments, realtime 3D

ultrasound also enables the investigation of image-based servo-

ing of minimally invasive surgical robots [11], [6]. In general,

only the straight tool shaft was present in the image in these

studies. The tracking algorithms were based predominantly on

shaft shape and employed linear Principle Component Anal-

ysis (PCA) [12], Hough transforms [10] or radon transform

line detection [6].

This body of work has assumed the use of laparoscopic-

type instruments that consist of a straight shaft. Many surgical

robots, however, are continuum robots that curve along their

length. This includes robotic catheters [13], [14], robotic

instrument sheaths [15], snake-like robots [16] as well as

concentric tube robots [17], [18]. While robot curvature is

often known in real time based on the kinematic model and

sensors, algorithms for detecting and tracking straight robots

cannot be easily adapted to robots that curve along their length.

As an example, the schematic of Fig.1 depicts work by

the authors in which a concentric tube robot enters the heart

through the vasculature under ultrasound guidance to perform

intracardiac repairs. The robot is comprised of a telescoping

arrangement of tubes in which each section is of approxi-

mately constant curvature [18]. While, currently, the robot is

controlled teleoperatively, a future goal is to perform some

tasks using image-based servoing under clinician supervision

as indicated by the block diagram in the figure.

The contribution of this paper is to present a detection

algorithm for robots of known constant curvature. Detecting

a single constant curvature is of practical value since, given

the limited field of view in ultrasound imaging, it is often

only the distal curved section of the robot that appears in

the image. Furthermore, the detection algorithm proposed here

represents the first step toward our long-term goal of detecting

and tracking robots of varying curvature in real time.

The remainder of the paper is laid out as follows. Prior

work related to tracking techniques in robotic surgery and

ultrasound-based instrument tracking are reviewed in the next

section. Section III presents the proposed algorithm for auto-

matic detection of constant-curvature robots in 3D ultrasound
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Fig. 1. Schematic block diagram of proposed 3D ultrasound image servoing
of a concentric tube robot inside the heart.

images. In Sections IV and V, the proposed approach is

evaluated using simulation and proof-of-concept experiments.

Conclusions appear in the final section.

II. RELATED WORK

Multiple sensing modalities are available for tracking surgi-

cal instruments, such as optical tracking (OPT), electromagnet-

ic tracking (EMT), image-based tracking [6], ultrasonic sensor

tracking (UST) [19], mechanical tracking [20], [21], as well as

some hybrid systems integrating two or more modalities [22],

[23]. A recent summary of tracking technologies appears in

[24].

Novotny et al [6] have classified the previous work for MIS

instrument tracking into two categories, imageless external

tracking systems and image-based tracking. Imageless external

tracking systems generally only track the instrument modeled

as a rigid body and neglect any flexing that occurs during tool

manipulation inside the body. In addition, imageless tracking

systems are not amenable to instrument servoing without

employing additional sensing to obtain the relative spatial

relationship between the robot tool and the tissue target.

Since image-based tracking systems can track both the

target tissue and manipulator from the image simultaneously,

they are well suited for automatic guidance of the surgical ma-

nipulator to targeted locations on the tissue. Most of the work

in this category has focused on tracking needles, catheters or

surgical grippers in 2D ultrasound images [25], and recently

on tracking the shaft of instruments [10], [12], [6], [8] using

3D ultrasound.

Previous instrument detection techniques using 2D ultra-

sound images cannot be directly applied to the 3D curved robot

detection problem. Furthermore, compared with 3D instrument

shaft detection, concentric tube robot detection is different due

to both the curvature of the robot and also due to practical

limitations. In particular, it requires more parameters to fully

represent the geometry of the curved tubular structure. In

addition, it is difficult to employ fiducial markers, such as those

proposed in [5], to a telescoping arrangement of tubes [18]. To

the best of our knowledge, this paper is the first to address the

curved robot detection problem using 3D ultrasound images.

Algorithms that have been previously employed for instru-

ment detection from images include the Hough transform [26],

the Radon transform [6] and the RANSAC (RANdom SAmple

Consensus) algorithm [27]. These are all robust methods for

detecting objects described by parameterized models, even in

the presence of outliers. There are also variants of the standard

Hough transform, such as the generalized Hough transform

and the randomized Hough transform [28], among others.

Briefly, the principle of the Hough transform is to map the

pixels in image space to parameter space, and then vote for

the most likely parameter values by accumulating the evidence

in an array, which is termed the accumulator array [29]. At

least six parameters (equation (1)) are required to describe a

curved robot in 3D space; even if it is simplified as a constant

curvature tubular structure. A 6D accumulator array over the

parameter space requires a large amount of memory and it

is extremely computational intensive to identify the global

maxima in 6D space due to the presence of local maxima.

To reduce the complexity of the optimization problem to

be solved, we employ 3D volumetric preprocessing followed

by a novel two-stage detection technique that reduces the

original six-parameter problem into a sequence of two three-

parameter problems: Since the constant-curvature arc lies in

a plane, we first estimate a three-dimensional normal vector

from the origin to the plane. We then project the points onto

the plane to estimate the center of the arc and its radius in

planar coordinates. This approach is extremely efficient in

comparison to the 6D accumulator array formulation and is

also flexible in its implementation.

III. DETECTION ALGORITHM

A gray-level ultrasonic volume image, V , is defined as an

M×N×P matrix, where v(i, j, k) represents the intensity of

the voxel at the ith row, jth column, and kth slice, which

corresponds to the Cartesian coordinates of the ultrasound

transducer system, as shown in Fig. 2. Here, x represents

increasing azimuth, y represents increasing elevation and z
indicates increasing distance from the transducer.

As shown in Fig. 2, a circle in Cartesian coordinates

of a gray-level ultrasonic volume can be parameterized

with six variables, p = [x0, y0, z0, θ, φ,R], where X0 =
(x0, y0, z0) defines the center of the circle, (θ, φ) are

the angular parameters describing the unit normal �n =
(cos θ cosφ, sin θ cosφ, sinφ) to the circular plane, and R is

the radius of the circle. A model for a circle c that employs

parameters p can be written as the set of points X = (x, y, z)
that lie on the intersection of a sphere and a plane as given

by,
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Fig. 2. Ultrasound coordinate system and arc parameters.
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where β ∈ [0, π], γ ∈ [0, 2π].
As one of the key steps for curved robot tracking, the

algorithm of this section addresses the problem of constant-

curvature arc detection, i.e., identifying p from V , based on

the partial arc imaged in the limited field-of-view ultrasound

image. The following subsections address the three parts of

the estimation process. First, image preprocessing is used

to remove the effect of imaging artifacts. Subsequently, the

estimation of p is performed in two parts. First, the non-unit-

length normal vector to the plane of the arc is estimated. The

final subsection describes the planar estimation of the center

and radius of the arc.

A. Preprocessing

Given our goal of curved robot tracking based on volumetric

frame streaming from the 3D ultrasound imaging device, all

steps in the detection algorithm should be automated and adap-

tive to inhomogenity between frames. Image preprocessing

is an extremely important step given that ultrasound images

are relatively noisy and since instruments produce substantial

imaging artifacts. To address these issues, we introduce a five-

step pipeline for segmenting a curved robot in any image with

sufficient contrast between the robot and background. Clinical

examples exhibiting sufficient contrast include instruments

inside fluid-filled body lumens or embedded in tissue, e.g.,

needles. Each step is described below and also is depicted in

Figure 3.

1) Automatic thresholding: Manual global thresholding is

only feasible when the intensity contrast profile is static for

all volumetric frames.

2) Median filtering: After the initial step of thresholding,

we typically employ a 3D median filter to remove the speckle

noise and small isolated islands contained in the thresholded

(a) Raw → (b) Thresholding →

(c) Median filtering → (d) Connected component →

(e) Erosion (f) Skeletonization

Fig. 3. Preprocessing pipeline for volumetric images using Maximum Inten-
sity Projection (MIP) for visualization. (a) raw image, (b) thresholding, (c)
island removal, (d) connected component region growing, (e) morphological
erosion and (f) parameter controlled skeletonization.

image, which are not desirable for the subsequent target

detection. Fig. 3(c) shows the effect after median filtering,

where each output voxel contains the median value in the

3× 3× 3 windowing neighborhood around the corresponding

pixel in the input 3D array.

3) Connected component filter: In this step, the curved

robot is assigned a label to differentiate it from its surround-

ings. A connected component filter performs this task to assign

a unique label to all connected voxels. For this volumetric

segmentation, a 6-connected neighborhood is used in three-

dimensional growing and the largest connected component

from the resulted multi-label image is taken as the curved

robot, as shown in Fig. 3(d).

4) Morphological erosion: Imaging artifacts cause the ap-

parent cross section of the tube to be substantially larger than

the actual diameter and to be noncircular. An erosion filter is

applied to trim the robot-labeled portion of the image using

a 3D ball-shape structure element with a radius of 2 voxels

producing output such as is shown in Fig. 3(e).

5) Skeletonization: The final step of the preprocessing

pipeline utilizes a skeletonization algorithm to reduce the 3D

labeled structure from the previous step to a curve while

preserving its topology [30]. There are many algorithms avail-

able for curve-skeleton or centerline construction. Considering

computational efficiency, we adopt a parameter-controlled

skeletonization based on the distance transform, DTv:

DTv = mini,j,kdist((x, y, z), (i, j, k)) : (i, j, k) ∈ Boundary,
(2)

where dist is the distance from the current voxel v(x, y, z) to

any voxel (i, j, k) on the set of boundary voxels.
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By comparing the distance transform, DTv and the mean

of DTv , we can determine if a voxel belongs to the skeleton

where the density of the skeleton is controlled by a Thinning

Parameter (TP),

v(x, y, z) = 1, ∀ v : (DTv −mean(DTv)) > TP. (3)

The result of the preprocessing is a skeleton of the robot tube

as shown in Fig. 3 and the corresponding skeleton voxels in

Cartesian coordinates are represented by

Xs = {(x, y, z) : v(x, y, z) = 1}. (4)

Circle detection is now implemented on the skeletonized

image by decoupling the six-parameter estimation problem

into two three-parameter problems. As described below, the

normal vector �n to the plane containing the circle is first

estimated. Then, all points determined to lie in the estimated

plane are projected into it for estimation of the radius and

center of the planar circle. Finally, the 2D center coordinates

are transformed back to obtain the spatial center {x0, y0, z0}.

B. Plane Detection

Despite preprocessing, the skeleton voxels contain outliers

that do not describe the instrument arc. Thus, a robust algorith-

m is needed to estimate the plane of the arc from the skeleton

point cloud. A RANSAC algorithm is adopted for this purpose

since it can provide good parameter estimates despite a large

number of outliers [27]. Furthermore, RANSAC has recently

been successfully applied to the localization of straight instru-

ment shafts in 3D ultrasound [27]. The input of our RANSAC

plane detector is a set of points, Xs, corresponding to the

skeleton points derived from image preprocessing. The outputs

of the algorithm are the normal vector to the plane of the arc,

�n, and the subset of X − s that are considered inliers to the

detected plane.

Since the RANSAC algorithm is well described in the

literature [27] , only a brief description is provided here. The

algorithm starts by randomly selecting three points from Xs

to calculate the plane parameters. Next, the remaining points

in Xs are evaluated for membership in the calculated plane

according to a distance threshold. These steps are repeated a

fixed number of times to determine the best model fit among

all sets of calculated parameters.

C. Circular parameter estimation

Once the plane normal direction and inliers are estimated,

the inliers can be projected onto a plane perpendicular to �n
for estimation of the resulting planar circle parameters. Many

robust planar circle estimation techniques can be employed

here including the Hough transform or RANSAC. We adopt

the algorithm proposed in [31] to estimate the circle center

and radius. The algorithm minimizes the “approximate mean

square distance” metric [31] from data points to a curve

defined by implicit equations by solving a generalized eigen-

vector problem. This approach is fast in comparison with a

geometric fit and can provide accurate results even when only

a small arc of the circle appears in the image.

IV. SIMULATION

While our detection algorithm is based on circle parameter

estimation, it is often the case that only an arc of the circle is

present in the image volume. This occurs not only because of

the limited field of view of the ultrasound probe, but also due

to the piecewise constant curvature shape of the robot. (Recall

Fig. 1.) It can be expected that the estimated parameters of the

circle will be less accurate as the central angle of the imaged

arc decreases and as image noise increases.

Simulation was employed to evaluate the effect of central

angle and image noise on the detection algorithm. This allows

us to characterize best-case performance before considering

the effects of ultrasound imaging artifacts. Synthetic volumet-

ric images were generated using the following variation of

(1) in which N (�n) represents the null space of �n, {v1, v2} ∈
N (�n) are an orthogonal vector pair and α is the central angle

parameter of a circular sector.



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z
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
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,
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(5)

Volumetric data sets were produced by first using sampled

values of α ∈ [αmin, αmax] in (5) to obtain a set of Cartesian

points. Zero mean Gaussian noise with variance σ2 was added

to the sampled points and the point coordinates were then

rounded to the Cartesian coordinates of the imaging volume.

Finally, the intensity of these coordinates was set to the

maximum value in the image space.

Three metrics were defined to evaluate the detection algo-

rithm. These are the radius estimation error, ǫR, the normal

vector misalignment, ǫ�n, and the center estimation error, ǫ0,

as defined below.

ǫR = |R− R̂| (length) (6)

ǫ�n = arcsin(�n× �̂n) (angle) (7)

ǫo = ||X0 − X̂0|| (length) (8)

Here, estimated parameters are labeled by ·̂, | · | takes the

absolute value, and || · || represents the norm of a vector.

As an example, a ground truth circle was defined by its cen-

ter, X0 = [10, 10, 10], normal vector, �n = [0.57, 0.57, 0.57],
and radius R = 10. Figure 4 shows the estimation result for

a specific image volume corresponding to a quarter circle and

noise standard deviation of σ = 0.5. The error metrics for the

depicted case are ǫR(90
◦, 0.5) = 0.26, ǫ�n(90

◦, 0.5) = 4.77
degrees, and ǫ0(90

◦, 0.5) = 0.83.

The error metrics were evaluated for eight central angle

values and nine values of Gaussian noise standard deviation.

The standard deviation of the simplified Gaussian noise was

taken to be a fraction of R/10. The results appear in Table

I. The lower left corner of the table corresponds to the best

estimation conditions of a large central angle and a small noise

standard deviation while the upper right corner represents short

arcs and high noise. It can be observed that the error metrics

become large for α = 45◦ and σ ≥ 0.33 × R
10

. Therefore,

in practical applications, we should attempt to ensure that the

2086



10

15

5

10

z

measured

measured

estimated

true

S��

5

10

15

5

10

15

y

estimated S��

yx

Fig. 4. Circle estimation example using simulated data for a 90
◦ arc and

σ = 0.5. The estimated normal and complete circle are shown.

TABLE I
CIRCLE ESTIMATION ERROR METRICS AS FUNCTIONS OF INCLUDED

ANGLE, α, AND GAUSSIAN NOISE STANDARD DEVIATION, σ.

σ(× R

10
) 0.11 0.22 0.33 0.44 0.55 0.66 0.77 0.88 1.0

α(deg) ǫ

45◦ ǫR0.26 0.09 3.07 5.59 1.82 0.34 0.38 2.62 11.15
ǫo 0.85 3.17 7.52 10.14 2.46 8.02 4.60 2.86 18.16
ǫ�n4.6218.6235.6240.2310.4049.8928.5712.6859.45

90◦ ǫR0.00 0.02 0.22 0.07 0.17 0.54 0.36 0.42 1.18
ǫo 0.24 0.09 1.50 0.53 1.06 0.67 0.66 0.47 3.64
ǫ�n1.41 0.48 9.20 3.12 6.72 1.24 3.68 3.06 20.39

135◦ ǫR0.03 0.00 0.08 0.05 0.05 0.11 0.15 0.04 0.31
ǫo 0.04 0.10 0.16 0.31 0.19 0.23 0.65 0.36 0.65
ǫ�n0.08 0.77 1.08 2.52 1.41 1.71 4.42 3.08 3.52

180◦ ǫR0.01 0.03 0.01 0.03 0.04 0.06 0.09 0.07 0.05
ǫo 0.04 0.08 0.02 0.19 0.12 0.11 0.13 0.84 0.13
ǫ�n0.22 0.56 0.06 1.68 0.78 1.16 1.76 7.46 2.44

225◦ ǫR0.00 0.00 0.01 0.03 0.04 0.03 0.01 0.05 0.07
ǫo 0.01 0.01 0.03 0.04 0.04 0.05 0.03 0.11 0.17
ǫ�n0.05 0.26 0.19 0.38 0.77 0.68 0.49 1.46 2.59

270◦ ǫR0.00 0.01 0.01 0.00 0.01 0.00 0.01 0.02 0.04
ǫo 0.01 0.03 0.01 0.04 0.05 0.06 0.10 0.08 0.13
ǫ�n0.08 0.46 0.05 0.29 0.78 0.37 1.50 0.88 2.14

315◦ ǫR0.00 0.00 0.00 0.01 0.02 0.02 0.03 0.07 0.05
ǫo 0.01 0.01 0.00 0.03 0.05 0.04 0.06 0.06 0.07
ǫ�n0.02 0.03 0.57 0.47 1.37 0.44 0.48 0.19 2.78

360◦ ǫR0.00 0.01 0.01 0.02 0.01 0.00 0.01 0.01 0.00
ǫo 0.00 0.01 0.02 0.03 0.02 0.05 0.01 0.09 0.05
ǫ�n0.02 0.10 0.76 0.58 0.74 0.48 1.51 0.40 0.17

central angle of the visible portion of the curved instrument

in the 3D ultrasound image is at least 45◦ and σ should be

less than 3.3% of the radius.

V. EXPERIMENTS

Experiments were performed in a water tank as shown in

Fig. 5. Three dimensional ultrasound images were acquired

using a Philips SONOS 7500 (www.philips.com) with an X4

probe. The probe was mounted as shown in a linear stage

while a piecewise constant curvature rod was submerged and

mounted on a rotary stage. By adjusting the linear and rotary

stages, the position and orientation of the instrument with

respect to the probe can be controlled. The bottom of the tank

was lined with a rubber pad to reduce reverberation.

Linear

stage

Water tank

UltrasoundRotary
probe

Rotary

stage

Curved

instrument

(a)

x

y
z

R1=

(x,y,z)

8
R1=30 mm

(b)

Fig. 5. Water tank experimental design. (a) Photograph, (b) Curved
instrument parameters.

The curved instrument rod was fabricated from a photopoly-

mer by 3D printing to ensure accurate control of curvature. As

shown, its distal region had a radius of curvature of R1 = 30
mm and a central angle of α = 180◦. Its proximal length was

straight (R2 = ∞). The rod diameter was 2 mm.

Standard settings of the imaging parameters were used

during image generation, including 50% overall gain, 50%

compression rate, frequency fusion mode 2, high density scan

line spacing, 9 cm image depth, and zero dB power level.

The 3D ultrasound image volumes can either be recorded

to a CD or streamed to a computer for further processing. The

streaming module was implemented in C++ and the detection

algorithm was coded in MATLAB (MathWorks, Natick, MA).

Three types of experiments were performed to evaluate the

proposed detection algorithm. First, the preprocessing pipeline

was tested by comparing it with manual segmentation. Next,

the parameter estimation method was tested by generating a

linear probe motion with respect to the instrument rod and

evaluating the error in the estimated instrument path. Finally,

ex vivo validation was performed by submerging a porcine

heart in the water tank and placing the curved portion of the

instrument inside the right atrium. Each set of experiments is

described below.

A. Preprocessing algorithm

To evaluate the preprocessing pipeline of curved instrument

segmentation, we performed a comparison of ten automatically

labeled instruments with those that were labeled manually. The

volumetric overlap metric (Dice metric, defined as twice the

intersection of two volumes over the combined set) was used

to evaluate the comparison,

Dice(A,B) =
2|A ∩B|

(|A| ∪ |B|)
, (9)

where A and B are the instrument volumes labeled automati-

cally and manually, respectively, and | · | computes the number

of voxels. The results of the ten comparisons are plotted in

Figure 6. With an average Dice value greater than 0.91, the

proposed preprocessing algorithm is capable of sufficiently

accurate segmentation to enable robust parameter estimation

using the techniques described in the following sections.

2087



1 2 3 4 5 6 7 8 9 10
0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

Volume Number

D
IC

E
 M

e
tr

ic

Fig. 6. Plot of Dice (volumetric overlap) metric comparing preprocessing
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Fig. 7. Parameter estimation example. (a) Ultrasound image as acquired. (b)
Detection algorithm output including skeleton data set, estimated circle and
center.

B. Parameter Estimation

In this experiment, the instrument rod was fixed in position

and the probe was translated with respect to it back and forth

in the x direction using the linear stage shown in Fig. 5.

Ten independent experiments were conducted to examine the

trajectory estimation performance. The probe mounted on the

translational stage was moved in a step size of 0.5 mm for

each volume sample. The resolution of the translation stage

is 0.01 mm. Registration was performed by aligning the base

frames of the translation stage and ultrasound transducer, and

calculating the translation offset by sampling the paired points.

A typical detection example is shown in Fig. 7 and the

estimated path of the circle’s center is plotted in Fig. 8. The

average values of the error metrics for this path were ǫR =
2.3 ± 1.5 mm, ǫ�n = 2.5 ± 1.6 degrees, and ǫ0 = 2.1 ± 1.1
mm.

C. Ex vivo imaging

It is more difficult to visualize instruments inserted inside

the body rather than in a water tank. To determine if the

proposed algorithm is applicable to a clinical situation, a

porcine heart was submerged in the water tank and the curved

instrument was inserted inside the left atrium. Since tissue and

instruments have substantially different acoustic impedance

values, it is possible to tune the acquisition parameters of

the ultrasound system for each. In particular, by reducing

the power level, the acoustic reflections from the tissue are
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Fig. 8. Actual and estimated instrument path corresponding to probe motion
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Fig. 9. Images of the instrument inserted inside a porcine heart. (a) Tissue
optimized image. (b) Instrument optimized image. The instrument appears as
indicated by the arrow. (c) Estimated circle.

substantially reduced while those of the instrument remain

sufficient for imaging. This effect is demonstrated in Fig. 9.

The estimated instrument curve is also shown.

VI. CONCLUSIONS AND FUTURE WORK

This paper investigates the problem of automatic curved

robot detection from realtime 3D ultrasound images, and
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represents our first step toward achieving realtime tracking

and image-based servoing of continuum robots. Our proposed

algorithm includes a preprocessing pipeline for automatically

extracting the curved robot from ultrasound volumetric images.

It then applies a novel two-stage approach to decompose the

six parameter curve estimation problem into a sequence of

two three-parameter problems. Efficacy of the algorithm was

demonstrated through simulation and experiment.

The current algorithm is limited to detection of a single

segment of constant curvature at the distal end of the robot.

While this is directly applicable to many clinical situations

given the limited field of view of 3D ultrasound systems, our

goal is to extend the approach to multiple connected segments

of constant curvature. Since both the RANSAC plane detector

and subsequent circular parameter estimator are parallelizable

algorithms, we plan to develop a real-time tracking method

using GPU (Graphical Processing Unit) computing and by

taking advantage of the known kinematic trajectory as prior

information in the estimation process.
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