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Abstract—For control applications involving small displace-
ments and velocities, friction modeling and compensation can
be very important, especially around velocity reversal. We pre-
viously described single-state friction models that are based
on elasto-plastic presliding, something that reduces drift while
preserving the favorable properties of existing models (e.g., dis-
sipativity) and that provide a comparable match to experimental
data. In this paper, for this class of models, discrete estimation for
friction force compensation is derived. The estimator uses only
position and velocity (not force) measurements and integrates
over space rather than time, yielding a discrete-time implemen-
tation that is robust to issues of sample size and sensor noise,
reliably renders static friction and is computationally efficient for
real-time implementation. Boundedness with respect to all inputs,
convergence during steady sliding and dissipativity are established
for the discrete-time formulation.

Index Terms—Discrete-time control, friction compensation, fric-
tion estimation, friction modeling, mechanical systems, presliding.

I. INTRODUCTION

F OR CONTROL, friction modeling can be complex, par-
ticularly to account for the details of friction around ve-

locity reversals, at very low velocity or for very small motions.
Over the past 40 years, it has become clear that dynamic friction
phenomena play a role under these conditions. The literature ad-
dressing dynamic friction and control is large and growing by
several tens of articles each year. No attempt is made to survey
the literature here, but see [1]–[5].

Some applications of dynamic friction models require real-
time implementation. An example is rendering friction as part
of simulating object manipulation in a virtual reality, which is
needed to drive a haptic man-machine interface [6], [7]. Mod-
eling static friction is particularly important for this applica-
tion, since without it objects can drift about in the virtual re-
ality. Thus, a suitable friction model for haptic rendering must
both reliably render static friction and be suitable for real-time
implementation.
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Fig. 1. Friction model analogy. A block of mass � moving under the action
of an applied force � subject to a friction force � showing the decomposition
of displacement ���� into an elastic component ����, and a plastic component
����.

Prior to the introduction of the state variable models, simu-
lating velocity reversal and static friction often involved discon-
tinuities in the differential equation and even a change of model
structure to reflect static friction. For example, the Karnopp
model changes from one dynamic equation to another to model
static friction [8]. Similarly, the reset integrator model described
in [4] has one structure for static friction and another with one
fewer states for sliding friction. Both of these models have been
applied to haptic rendering [9], [10].

Friction models that change structure in the transition from
static to sliding friction have inherent disadvantages. Sensor
noise can be sufficient to force a transition between one struc-
ture and another. Additionally, when a transition from sliding to
sticking is detected, it can be necessary to back up the simulation
to the point of the transition and restart it in the new structure.
This complexity is always undesirable and may be unsuitable
for real-time implementation.

The Dahl-type friction models [1], particularly the LuGre
model [5], overcome the need to have two structures in the fric-
tion model. A single state variable qualitatively models the state
of elastic deformation in the contact, as illustrated in Fig. 1.
The state variable is a proxy for the deflection of all as-
perity contacts between the two sliding surfaces. With the LuGre
model, the Stribeck effect and frictional lag can be modeled with
a single state equation and no discontinuities [5]. This model has
been applied in numerous studies [11]–[13].

The Dahl-type friction models, however, have been studied
in the continuous time and discrete-time implementations face
a challenge because of the nonlinear and stiff nature of the dy-
namics of the elastic state [14]. In offline simulations, a
sophisticated numerical integrator with variable step size can be
used. But these methods may be impractical for real-time imple-
mentation with limited computing power, such as a haptic inter-
face driven by a microcontroller [6]. Additionally, both the Dahl
and LuGre models exhibit drift rather than static friction [15].
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To be suitable for applications requiring real-time implemen-
tation and where representing static friction is important two im-
provements are required. The state equation must be modified
to model static friction, leading to the elasto-plastic (EP) model
[15], and an efficient, discrete-time formulation is needed for
implementation in a microcontroller. The remainder of the paper
is organized as follows. Static friction in state-variable models
is discussed in Section II, and the discrete-time EP model is pre-
sented in Section III. Several desirable properties of the model
are demonstrated in Section IV, and robustness to implenta-
tion issues is addressed in Section V. Finally, we conclude in
Section VI.

II. STATIC FRICTION IN DAHL-TYPE STATE-VARIABLE

FRICTION MODELS

Referring to Fig. 1, where represents the externally mea-
surable rigid body displacement of the mass; represents the
deflection of the proxy asperity or the elastic component of the
displacement, and represents the sliding or plastic compo-
nent. The total displacement is the sum of the elastic and
plastic components, and , respectively

(1)

The “elasto-plastic” model studied by Prandtl to represent the
behavior of solids under stress is applied here to represent the
regimes of motion possible in the Dahl-type friction models
[17]. Also seen in Fig. 1, term is the externally applied
force on the body and is the friction force.

Several Dahl-type friction models have been presented with
different forms for the evolution of the internal state. In the orig-
inal Dahl model, the state is governed by [1]

(2)

in the LuGre model, the state is governed by [5]

(3)

and in the EP model, it is governed by [15]

(4)

where is the asperity deflection corresponding
to Coulomb friction and is the value of corre-
sponding to steady-state sliding with velocity . With each
of these forms is associated an output equation of the form

(5)

with

where is the instantaneous friction determined from the
model, parameter models the stiffness of the frictional con-
tact; can be tuned to damp oscillations of state ; is
the viscous friction parameter. Dahl incorporated exponent to

Fig. 2. Stribeck curve. Under a critical velocity � which is very small, the
steady-state friction force increases from � to � when velocity goes to
zero. Above the critical velocity, the friction typically increases with viscous
like behavior.

shape the force-displacement curve to measured experimental
data and did not incorporate any term [1]. Empirical results
suggest that is adequate.

In lubricated contacts, the friction-velocity curve, which plots
steady state friction force, , versus velocity, , shows a
smooth rather than abrupt transition from static to sliding fric-
tion, such as is illustrated in Fig. 2. Depending on the detail with
which friction at low velocities is to be modeled, several forms
are commonly used for . These forms are

(6)

(7)

(8)

where (6) provides a simple Coulomb friction model and was
used with (2) by Dahl [1]; (7) is used in the LuGre model [5];
and (8) provides a model that is practically equivalent to (7) and
is more efficient to compute [2]. In (6)–(8), is the Coulomb
friction level, is the maximum or static friction level, and

is the characteristic velocity of the Stribeck friction. The term
in the Dahl-type models reflects the steady-state de-

flection of the hypothetical asperity and is given by

(9)

where the case statement ensures that is defined when
. With each of (2)–(4), during constant

velocity sliding.
A key advantage of the Dahl-type models is that they render

friction that varies in a smooth way as velocity goes through
zero, avoiding discontinuities in the friction force and changes
to the model structure (e.g., number of state variables) required
by the Coulomb- or Karnopp-type models at zero velocity.
The Dahl-type models incorporate , which is seen
in (6)–(9) to be discontinuous at . The distinction
between the Dahl-type models and the discontinuous models is
that for the Dahl-type models , and are all con-
tinuous functions of time. This is seen by considering (2)–(4),
where multiplies the term with . The right-hand side
of the differential equation is equal to zero when
encounters its discontinuity.
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While simplified, the elasticity illustrated in Fig. 1 and asso-
ciated with in (1)–(2) is physical. Elastic behavior in fric-
tional contacts is directly observed, for example, in pointing sys-
tems and high-precision machine tools [1], [16]. It is the discon-
tinuous nature of Coulomb-type friction models which is non-
physical.

The everyday notion of static friction assumes that
for . However, when contact elasticity is considered
the notion of static friction must be augmented to accommo-
date small elastic motions that can arise even when there is no
plastic motion. Informally, a contact in static friction may ex-
hibit elastic motions, but there should be no cumulative motion
when . Formalizing this idea, a state-variable friction
model possesses a static friction or stiction phase if there exists
a breakaway force such that, for any friction force that
satisfies

all motions are bounded in the range

where and is the maximum elastic deformation of
the frictional contact.

Following Prandtl’s description of elastoplastic deformation,
motion in a friction contact can be characterized by three
regimes: purely elastic displacement, mixed elastic and plastic
displacement and purely plastic displacement [17]. Using (1),
the three regimes are quantitatively determined by

purely elastic displacement,

mixed elastic and plastic displacement,
purely plastic displacement

sliding

For a state-variable friction model to exhibit static friction, it is
sufficient that

for all

since otherwise there generally exists a force trajectory ,
, such that but .

Writing , by simply repeating this trajec-
tory times, with sufficiently large, the accumulate so
that Two examples involving
oscillatory motion show the possible behaviors of the Dahl-type
friction models. In the examples below, units are given for linear
motion, but could be expressed for rotational motion with suit-
able change of dimension.

The first example is a simulation with parameters given in
Table I and results shown in Fig. 3. The simulation is done with
(3) without an elastic regime, and with (4) having an elastic
regime. At and , . In the interval

an oscillatory signal is applied. For the model without
an elastic regime, and . The example
shows that for this model, as the frequency of the oscillatory
input increases, the rate of drift increases.

The second example is taken from experimental data from
an instrumented electrical discharge machining (EDM) system

Fig. 3. Response of Dahl-type friction models to an oscillatory applied force
with �� ���� � � .

TABLE I
PARAMETERS OF THE FRICTION SIMULATIONS OF FIG. 3

Fig. 4. Friction versus time for an EDM Machine with a motion velocity of
�0.15 microns per second. (a) Friction estimated using the LuGre model.
(b) Friction estimated with the EP model. (c) Measured friction. Position data
were recorded in the experiment but are not shown here (see [16]).

[16]. The machine is instrumented to measure friction during
low-velocity slideway motions [16]. Measured friction data are
seen in Fig. 4(c). The position sensor data recorded in the exper-
iment (not shown, see [16]) include a noise component. Friction
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Fig. 5. Candidate curve to model transition from plastic to elastic behavior.
Under the breakaway deflection, � , ���� � �, and the model behaves elasti-
cally. Above � the contact is sliding and the steady-state deflection follows the
dynamics of Stribeck friction as in Fig. 2. A member of the family of resulting
curves is symbolized by a dashed line. The critical case when �� � � is shown
by a solid line.

estimated by a LuGre model is seen in Fig. 4(a). With low-ve-
locity motion and in the presence of sensor noise, friction is sig-
nificantly under estimated. This arises because the model lacks a
purely elastic regime and, in a fashion similar to the response to
a small oscillation in Fig. 3, the noise in the data causes to
relax, which in turn results in an underestimation of the friction.
Fig. 4(b) presents friction estimated by the EP model, which in-
corporates an elastic displacement regime. In the elastic regime,
noise-induced drift is eliminated and friction is reliably esti-
mated even for low-velocity motions.

A third example is haptic rendering, which provided the ini-
tial motivation for the developments reported here [6]. In haptic
rendering, is sensed as the user manipulates the haptic
input, and is computed and applied as force feedback
through the haptic device (see [7, Fig. 3, right panel]). Because
small tremors are natural to the human hand, the signal in-
evitably includes an oscillatory component similar to that seen
in Fig. 4(a). When a Dahl-type friction model is used, objects in
the simulated reality drift perceptibly. An EP model overcomes
the challenge by incorporating a purely elastic regime.

Relating (1) and (4), the rate of plastic displacement in the EP
model is given by

with for elastic displacement. By setting conditions
for , the conditions for static friction can be con-
trolled. There are many possible choices for . A form like
that seen in Fig. 5 gives a region
on which . When and , it is straight-
forward to show that for implies

on the same interval, and thus a purely elastic
regime is provided and static friction is modeled. One suitable
choice for is the piecewise continuous function

if otherwise

(10)

where and are parameters, and is a function which
models Stribeck friction.

III. DISCRETE-TIME ELASTO-PLASTIC FRICTION

MODEL IMPLEMENTATION

Introduction of meets the first goal of introducing
static friction into the state variable model. The second goal is
an efficient discrete time formulation. For discrete-time anal-
ysis, define a sequence of sample times , not necessarily
uniformly sampled in time. For example, sampling can be driven
by position sensor interrupts in some applications. Define
as the sequence of rigid body displacements at times and

as the displacement measurements, as the sequence
of measurements or estimates of , and as a sequence
of estimates of . The dynamics of the state variable model
can be written in time-free form by relating differential quanti-
ties of displacement, that is

Next, integrate this expression over a displacement

(11)

For a real-time implementation, the most straightforward in-
tegration of (11) is by explicit Euler integration. As is shown
below, when the step size is small relative
to , boundedness and convergence of the discrete time model
can be shown. This result may not be practical for real-time im-
plementation, however, because may be quite small, and in
the usual case of periodic sampling, a bound on may trans-
late into an impractically small bound on velocity. To ensure
that the model deteriorates gracefully as increases, we pro-
pose the simple expedient of saturating the sampled sequence
at its maximum value of . This method is an extension
to that described in [6] to the dynamic case. Because
can change between sample and , it is necessary to sat-
urate twice, once as it is computed, and again as it is used
for the next update. Incorporating the two saturation operations
gives the update law for the discrete-time, elasto-plastic friction
model, as expressed by

otherwise
(12)

otherwise
(13)

where is the unsaturated estimate of the change in . Equa-
tions (12) and (13), together with (8) and (10) give the dis-
crete-time, elasto-plastic friction model. A saturation mecha-
nism of this type has been incorporated by the third author into
high-precision machine tool control, with many units deployed
around the world. Note, however, that using this estimated signal
for friction compensation in closed loop may lead to chattering.
Capturing the case statements of (10), (12) and (13) with a
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model for Stribeck friction, the discrete-time EP model can be
expressed in pseudo code as shown in Algorithm 1.

-

- � ;

;

;

;

;

-
- ;

;

;

;

;

;

;

;

;

Algorithm 1. The cases of function assure static friction
for , while the cases of , assure the
boundedness of and convergence during steady sliding.
Terms , , and are model parameters; argument

is and is ; and argument term
is the previous value of the state, .

The EP model requires the parameters to be arranged so that

and with signals and prepared so that
. Analogous to (5), friction is given by

(14)

where and . Convergence
and the other properties of the EP model are demonstrated in
Section IV. Performance of the model is illustrated by an ex-
ample in Section V.

IV. DEMONSTRATION OF THE PROPERTIES OF THE

DISCRETE-TIME MODEL

Properties that are important for state-variable friction models
include: bounded-input bounded-output stability of the friction
estimator, during steady sliding with the estimator
state converges to its steady-state value, during sliding friction
opposes slip, and the model is dissipative for all .
These properties are formally demonstrated in theorems 1–4 in
the following. To ensure these properties, and indeed numerical
stability, the saturation operations of (12) and (13) are required
for the discrete time model. The saturation operations of (12)
and (13) create three cases for the friction estimation update and
several of the proofs must treat the cases individually. The three
cases of (12) and (13) are first described and then the properties
of theorems 1–4 are established.

A. Description of the Three Cases of the Friction
Estimation Update

The friction estimator, (12) and (13), includes two case state-
ments, giving a total of four combinations. Of these, it is not
possible to take the lower branch of (12) and the upper branch
of (13), and so only three cases are possible.
Case 1) Corresponds to the lower branch in each of (12) and

(13), and arises when . This case
can be triggered if the system is accelerating through
Stribeck friction and , and
gives .

Case 2) Corresponds to the upper branch in (12)
and lower branch in (13), and arises when

and is sufficiently large
so that . This case can
occur, for example, with high velocity or with a
long interval between samples. Taking the lower
branch in (13) is equivalent to , where
limit is given by

In this case is computed in (12), but the saturation
operates in (13) to give .

Case 3) Corresponds to the upper branches of (12) and (13),
and arises when and

. In this case the discrete-time elasto-plastic model
approximates the continuous time model.

Through the operation of in (10) and state update (12)
and (13), the elasto-plastic model has two characteristics that
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are established here, and used to demonstrate the properties as
follows.

Lemma 1: (Range for ) Given the EP friction model, (10),
(12) and (13), a sequence of measurements , then

(15)

Proof: Proof is given for , proof for follows
with suitable changes of sign. On the lower branch of (12),

and so (15) is verified. On the upper branch and with ,
(15) becomes

Recalling that is chosen so that , the
upper inequality is verified whenever ,
but when , , and so
the upper inequality is verified. The lower inequality is verified
whenever , but when , the lower
branch of (12) is chosen, and so (15) is verified in all cases and
the lemma is proven.

Lemma 2: (Plastic displacement occurs only in the motion
direction) Given the EP friction model, (10), (12) and (13), a
sequence of measurements and plastic displacement given
by , then either or

(16)

Proof: Proof is given for , proof for follows
with suitable changes of sign. In Case 1, and

, and so and . Recalling the
requirement that , if follows that (16) is
verified in Case 1. In Case 2, where the
last inequality follows from Lemma 1, and so ,
and either or (16) is verified. In Case 3, ,
and so by Lemma 1 either or (16) is verified.

B. Demonstration of Four Properties of the EP Model

Using the cases and lemmas laid out previously, four proper-
ties of the EP model are established.

Theorem 1: (Boundedness of the state) Given the EP friction
model, (8), (10), (12), and (13), a sequence of measurements

, and given for some , then ,
for all .

Proof: The saturation operations in (12) and (13) assure
that , for all .

Theorem 2: (Convergence during steady sliding) Given the
EP friction model, (8), (10), (12), and (13) and a sequence of
measurements with , then

Proof: If then the lower branch in (13)
is taken, and ; thus if the update rule of
Case 1 or Case 2 arises on any sample , then ,
for all . Case 3 is the remaining possibility of the state
update. To establish that a sequence of samples with updated

according to Case 3 converges to , consider the dynamics
of , where . From (12) and (13), one finds

(17)

In steady sliding, . Because
is a fixed point of (17). The fixed point is stable if

(18)

The extremal value for the center term of (18) while remaining
in Case 3 is given when . Substituting for in
(18), with some manipulation gives the requirements that

(19)

(20)

Considering that and
in Case 3, it is found that

and
, and the left inequality is verified. The right inequality is

equivalent to

(21)

which is also verified by the properties of and
. Equality in (21) corresponds to marginal sta-

bility of the fixed point. Strict inequality, corresponding to
and , assures asymptotic

stability.
To establish convergence of all sequences to

, it remains to show that enters the region on
which from any initial condition .
Considering (10), when ,
and . The system enters the condition

in steps, where is the smallest in-
teger such that . Thus, in the case that
the system is in the region where (marginal
convergence), until (asymp-
totic convergence) is obtained. If for all samples,
the system remains in Case 3 and asymptotically approaches
zero. If there is a sample in which , the system
moves to Case 2 and , for all .

Theorem 3: (The friction force opposes plastic displace-
ment) Given the EP friction model, (8), (10), (12), and (13) with

given by (14), a sequence of measurements , and
given that friction model parameter is chosen according to

(22)

then

(23)

where , and where is the plastic
displacement of the EP model in sample . Differences between
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the discrete and continuous-time bounds for are addressed in
Section IV-C.

Proof: By lemma 2, or ,
by the definition of , implies that

, and so in the product

(24)

the first and third terms are assured to be positive. Additionally,
by Lemma 1, the second term is positive in Cases 2 and 3.

The remaining challenge arises because
in Case 1. For this case, the term in (14) does not

oppose plastic sliding, and it is necessary to show that this term
is dominated by the other two. Factoring out the in (24),
it must be shown that

(25)

Taking advantage of the fact that the value of is known to be
in Case 1, and that the negative-most value possible for

is , the bound
for to assure (23) is given by (22).

Theorem 4: (The model is dissipative with respect to storage
function , for all ) Given the EP friction model,
(8), (10), (12), and (13) with given by (14), a sequence
of measurements , storage function and
given that friction model parameter is chosen according to
(22), above, then for all

(26)

Proof: Using , (26) can be expanded
to give

which gives

By lemma 2, or , and by the
choice for , when , and so
the first term makes a non-negative contribution. The third term
is assured to be positive by the requirement that

and the fourth term is non-negative. The second term
is now to be considered.

In Cases 2 and 3, either or ,
and so the second term makes a non-negative contribution in
these cases. It remains to show that the second term is dominated
by the first and third terms in case 1 when satisfies (22).
Exploiting the fact that in case 1 , and
so , which gives

(27)

The right inequality in (27) is demonstrated by (25). It is estab-
lished when satisfies (22), which completes the proof.

C. Discussion

The bound on given in (22) is the discrete equiva-
lent of the bound given in [11] and [18] for the contin-
uous-time state-variable friction model, which can be written

. The bound on for the discrete
model, however, has a substantially different form from that
found for the continuous-time model. The differences between
the continuous- and discrete-time bounds arise from the facts
that is computed only at sample instants , the pres-
ence of the term with in (22) and the fact that the allowable

increases with increasing .
With theorems 1–4, several formal properties of the EP model

are established. However, perhaps the most important property
of the EP model is that its performance degrades gracefully as
step size is increased, sample rate is reduced or noise is present
in samples . In Section V numerical examples of the EP
model are shown, specifically exploring these characteristics.

V. ESTIMATOR PERFORMANCE

As a result of the time-free formulation, spatial discretiza-
tion, not time discretization has an effect on the model fidelity. A
practical consequence is that sensing resolution drives the obser-
vation fidelity. Considering the physical scales of presliding and
Stribeck effects for metal to metal contact [1], [3], position must
be estimated or sensed with a resolution one micron or better
for presliding displacement to be well represented. Similarly ve-
locity must be estimated or sensed with a resolution of at least
0.001 m/s for Stribeck friction to be well captured. Again, this
figure presents a considerable instrumentation challenge. At a
rate of 1 kHz, if we set the velocity resolution quantum
at a 1/10 of this value, the position should be resolved at 100 nm!
These numbers indicate the use of down-sampling techniques
for velocity estimation [19]. As a matter of fact, today’s in-
dustrial practice in machine tool applications calls for 50-nm
resolution in the detection of slideway movements. As these
values are the physical scales of the phenomena, these stringent
sensing or estimation requirements apply to any friction esti-
mator. To illustrate these issues, the estimator’s performance
with respect to discretization resolution, initial conditions and
noisy inputs is detailed below for a simple example. A system
comprising a mass sliding on a frictional surface under the ac-
tion of an applied force, is simulated using a stiff ODE solver
to approach the conditions of continuous time. The trajectory

is recorded during simulation and supplied as an input to
the discrete friction estimator. An update, according to (13), is
triggered when an incremental displacement is detected to be
of a magnitude larger than a given resolution . The Stribeck
curve is described by (8), the parameters are given in Table II.

A. Fidelity

Estimation results for several values of spatial resolution
are compared with the continuous time solution using

the applied force shown in Fig. 6(a) to illustrate the various
regimes. The estimates of elastic displacement and friction
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TABLE II
FRICTION MODEL PARAMETERS

Fig. 6. Numerical behavior of the estimator. The solid curve shows the applied
force and reference response, the dot and dash curves show the response of the
discrete-time EP model for three levels of spatial quantization.

force are shown in Fig. 6(b) and (c), respectively, for
three values of spatial resolution, . As the spatial resolution
becomes smaller, the estimation approaches the continuous
case.

An initial force spike causes transient sliding, then a large
magnitude oscillating force causes the contact to transition from
presliding to sliding several times. The applied force then re-
turns to zero allowing the contact to settle unforced. At the
highest resolutions 0.1 and 1 m, the responses are not graphi-
cally distinguishable from the continuous case. Detailed views
of three segments of the system response are seen in Fig. 7.
In Fig. 7, at the highest resolution 0.1 m, the esti-
mate is still not graphically discernible from the continuous

. The observation error degrades gracefully for an increase
in covering nearly two orders of magnitude, up to 50% of

. Recalling the convergence condition (18),
at the lowest resolution, the discrete updates become visible.
In Fig. 7(b), the region starting at 0.6 s shows the tran-
sition from presliding to sliding and back to presliding. Errors
are well behaved for all step sizes, and, as expected, the response
of the discrete-time implementation approaches the behavior of
the continuous-time model as grows small relative to .

Fig. 7(c) shows the contact settling when the applied force
becomes zero at 1.0 s. For relatively large the discrete-
time model shows a steady-state error. This is expected because
of the absence of time-varying signals to activate the friction

Fig. 7. Enlargement of Fig. 6. Subplot (a) shows response of the Discrete-time
EP model to an offset of initial condition; subplot (b) shows a detail during an
interval of velocity reversal; and subplot (c) shows a detail of the interval where
� ��� � �.

model dynamics. The final error value is bounded by the spatial
resolution.

B. Convergence

To illustrate state convergence, an incorrect initial condition
is applied for the simulations of Figs. 6 and 7. For these figures,
the discrete-time model is initialized to , where as
the reference model is initialized to . From theorem 2,
state observation error is expected to go to zero in steady sliding.
The reduction in estimator error is seen in Fig. 6(b) and (c), and
especially in the enlargement of Fig. 7(a). The figures show the
estimation error to go to zero for all levels of spatial resolution.
Note that some degree of plastic displacement is necessary to re-
duce estimation error, since during purely elastic displacement,
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Fig. 8. Detailed response of the discrete estimator as in Fig. 7 for a noisy input.

displacement and velocity measurements alone are insufficient
to estimate .

C. Effect of Noise

During elastic presliding, the incremental uncertainty in
is at most the incremental uncertainty in , irrespective of the
model parameters. Two cases arise. When the noise amplitude
is smaller than sampling interval , the presence of noise is re-
flected as small errors in the state update, but when the noise am-
plitude is greater than , spurious sliding occurs, resulting in
larger errors. This behavior is seen in Fig. 8, obtained by adding
uniform random noise of magnitude 1 m to the trajectory
supplied as an input to the friction estimator. Comparison with
Fig. 7 shows that for a larger than or equal to the noise am-
plitude, the prediction is only marginally affected, but for a
smaller than the noise 0.1 m in the figure), the pre-
diction error becomes larger than the noise. We can observe the
beneficial effect of the correct selection the estimator spacial
sampling relatively to the quality of the sensor signal.

VI. CONCLUSION

The Dahl-type friction models offer a good balance between
ease of implementation and fidelity to the details of friction, with
guaranteed boundedness and convergence. With the addition of
a suitably designed function to control plastic displace-
ment, static friction is modeled and drift is avoided. The later
characteristic is particularly useful for applications where the
response of the model to sensor noise must be considered. The
model also can represent a simplified form of friction hysteresis.
The discrete-time implementation has been shown to be stable
and converge to the desired steady-state value in steady sliding,
independent of the sample size. And although the highest fi-
delity to the continuous time model is achieved with low noise
and small steps, examples show the estimation to degrade grace-
fully as noise and step size are increased under the simple con-
dition that the step size should always be greater or equal to the
noise.

Further research could be pursued in several directions. There
is some evidence that single-state models may be applicable
to the cases where transmissions are considerably more elastic
than contacts [20], whereas for machine tools of primary focus

in this article, the opposite is generally true. Also, there might be
advantages in using integration schemes that are more sophis-
ticated than Euler integration. Can the performance guarantees
of theorems 1–4 be established for a more sophisticated inte-
grator? Finally, are there methods to convert continuous multi-
state friction models into their discrete counterparts provably
having equivalent properties?
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