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ABSTRACT
Recently, the authors developed analytical expressions for the

dispersions of Floquet waves that propagate in a structure con-
sisting of a plate with multiple arrays of line attachments. The
dispersions of these Floquet waves, and in particular the imagi-
nary parts of their wavenumbers, quantify the attenuation of vi-
brational energy in space as the frequency of a local excitation is
varied. Understanding how the parameters of the attached struc-
tures, such as their spacings and impedances, affect the Floquet
wave dispersions could provide further means to include consider-
ation of energy localization or distribution in the structural design
process. Such an understanding is developed in the present work
by identifying those cases in which the treatment of certain arrays
can be greatly simplified. In particular, limiting cases of small
and large array spacings are investigated for which the treatment
of particular arrays can be greatly simplified. Such simplifica-
tions are not immediately obvious without access to analytical
expressions for the Floquet wavenumbers, as the dynamics of all
arrays are coupled through the plate. Results presented here will
aid the structural design community by indicating which design
changes most effectively control energy distribution and by in-
dicating when simplified finite element models of multiple-array
structures are possible.

NOMENCLATURE
dr Distance between adjacent substructures of therth array.

∗Address all correspondence to this author.

E Young’s modulus of the plate material.
Fr Force applied by the plate to therth array.
k Transform wavenumber.
kd,r Spacing wavenumber of therth array (equation 8).
kf Flexural wavelength of the bare plate.
m Mass per unit area of the bare plate.
Q Dispersion function (equation 12).
ṽ Wavenumber transform of plate velocity.
Ỹ Bare plate admittance in the wavenumber domain.
Ỹr Plate admittance in the wavenumber domain with the first

(r −1) arrays attached (equation 14).
Zr Line impedance looking into therth array.
Z(r) Distributed impedance looking into therth array (equation

3).
ν Poisson’s ratio of the plate material.
Ω Normalized frequency (equation 43).
Ωbound Bounding frequency that indicates when an array may

be homogenized to engineering accuracy.
ζr Normalized impedance (equation 27).

1 INTRODUCTION
A variety of engineering structures consist of a homogeneous

elastic master structure, such as a plate or shell, that is attached
to regularly spaced substructures, such as ribs, stringers, or fins.
Due to other design criteria, such structures sometimes have two
or more arrays of attachments, where each array consists of regu-
larly spaced substructures that present identical impedances to the
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master structure. For example, aircraft fuselages are reinforced
by ribs and stringers that prevent the structure from collapse and
sections of the fuselage are joined by bulkheads. Ship structures
are similarly constructed. In addition to these, a broad class of
circular structures exist, such as brake rotors and gas turbines, that
have one periodicity corresponding to the circumference of the
structure and other periodicities that result from attached struc-
tures, such as heat fins or blades. This paper is concerned with
the distribution of vibrational energy in such structures and, in
particular, the effects of excitation frequency, master structure
dynamics, substructure dynamics, and substructure spacing on
the distribution of vibrational energy.

One way of understanding the distribution of vibrational en-
ergy is to look at the attenuation of waves as they propagate
through the structure. The affects of periodic variations on the
propagation of waves through a medium was observed by Bril-
louin (1946), who identified “stopping” and “passing” frequency
bands where energy was localized and distributed, respectively.
Mathematically, this phenomenon can be identified from Flo-
quet’s Theorem. Denotingv(x) as the steady-state response
amplitude of a time-harmonic response, this theorem states that
v(x) = p(x)exp(ikx), wherev(x) is the complex amplitude of
response,p(x) is a periodic function whose period is the spatial
period of the structure, andk is the Floquet wavenumber. When
k has a large imaginary part, energy is localized because the Flo-
quet wave is highly attenuated. Floquet wave dispersions were
analytically found by Miles (1956) for the case of a beam on rigid
supports and by Heckl (1961) for the case of a plate supported by
regularly spaced beams. These analyses indicated that the imag-
inary part ofk alternates between large and small as frequency is
varied, thus producing stop and pass bands.

Following these works, two approaches emerged for analyz-
ing more complicated structures. The first method, which shall be
referred to here as theeigenvalue method, formulates and solves
an eigenvalue problem for the attenuation constant based on Flo-
quet’s Theorem and equations of motion for one cell of the pe-
riodic structure. Applications of this method to beams with one
array of attachments were described by Ungar (1966) and Bo-
brovnitskii and Maslov (1966). Mead (1970, 1973, 1975, 1996)
extended the approach to any linear structure and developed in-
sights into the locations of the stop and pass bands as well as
the number of Floquet waves that propagate in a structure. The
second method, which shall be referred to here as thewavenum-
ber method, proceeds by taking the spatial Fourier transform of
the differential equations of motion of the structure. Applications
of the method to elastic structures were presented by Romanov
(1971), Evseev (1973), and Rumerman (1975).

Both methods have been previously applied to the analysis of
structures with two arrays of attachments. The eigenvalue method
was employed by Gupta (1972) and the wavenumber analysis of
a plate with two arrays of line attachments was first presented by
Mace (1980). Recently, Cray (1994) presented an analysis of a

plate with two arrays of attachments, one being arbitrarily shifted
with respect to the other.

Recently, the authors developed a wavenumber-based proce-
dure for finding Floquet wave dispersion relations for structures
with multiple arrays of attachments, and applied it to the case of an
elastic plate with multiple arrays of line attachments (Gueorguiev
et al, 1999). The dispersion relation is unique in that it contains
the dispersions as a sequence of structures, starting with a bare
plate and conceptually adding the arrays in order of increasing
spacing until one reaches the array with the largest spacing.

To further simplify the dispersion analysis of multiple array
structures, this paper identifies conditions under which particular
arrays can either be omitted or approximated insofar as the Floquet
wave dispersions are concerned. For arrays with small spacings,
the particular approximation studied here is that of homogeniza-
tion, in which an array is approximated by evenly distributing the
impedance of each attachment over a length equal to the spacing
of the attachments. The distributed impedance is then combined
with the plate impedance, so that the net effect of the array is to
change the impedance of the plate. This approximation allows
one to effectively replace the actual plate and attached array by
a fictitious equivalent plate whose parameters are chosen so that
it’s dynamics approximate those of the actual structure. This ap-
proximation is sometimes referred to as a “smearing” of the array
into the plate.

These simplifications in complexity are intended to aid the
structural design community in two important respects. First,
designers will be able to assess the importance of attachment
spacing and impedance on the distribution of vibrational energy.
In particular, this paper identifies those cases for which the spacing
of the attachments is unimportant insofar as vibrational energy
distribution is concerned. For these cases, designers could choose
the spacings based on other design criteria. Second, the concepts
will allow for simpler finite element models of periodic structures
by indicating situations where a detailed model of a particular
array is not necessary.

In the following section, the dispersion relations for a plate
with multiple arrays of line attachments are reviewed. Section
3 presents the limiting case where the array spacings approach
zero. In this limit, the array is homogenized into the plate and
an expression is presented for the equivalent plate impedance.
Section 4 establishes conditions under which the array may be
homogenized into the plate, and bounds the associated errors, by
expanding the Floquet wavenumbers in Taylor series about the
bare plate’s flexural wavenumber. The first term in the Taylor
series is associated with the homogenization of the array into the
plate and the higher-order terms represent the associated errors.
Section 5 contains an investigation of the opposite limit, where
the largest array spacing approaches infinity. For this case, it is
shown that the array does not affect the Floquet wave dispersions
and can therefore be entirely neglected from the model. Section 6
demonstrates through examples how these limiting cases are ac-
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Figure 1. Thin elastic plate with three arrays of line attachments. The

circles represent line impedances that extend along the y coordinate (into

page).

tually applicable to the analysis of practical structures with finite
array spacings.

2 EXACT DISPERSION RELATIONS FOR A PLATE
WITH MULTIPLE ARRAYS
Figure 1 contains a schematic of the type of structure being

considered here. It consists of a thin elastic plate withR arrays
of line attachments. It is assumed that all attachments in therth

array are identical and that each attachment exerts a line force that
is proportional to its velocity and its impedanceZr. The arrays
are ordered by their spacings so thatdr > dr−1. Furthermore,
it is assumed that each array spacing is an integral multiple of
the smaller array spacings and that a spatial point of coincidence
exists at which an attachment from each array interacts with the
plate. The dispersion relations of Floquet waves propagating in
this structure have been previously derived in detail (Gueorguiev
et al, 1999), so the derivation will only be summarized here.

It will be implicitly assumed that the plate’s displacement
is only a function of thex coordinate. The plate’s displacement
W (x,t) is assumed to obey the following partial differential equa-
tion:

D
∂4W

∂x4 −m
∂2W

∂t2
= −

R∑
r=1

Fr(x,t), (1)

wherem is the mass per unit area of the plate. The bending stiff-
ness isD = Eh3/[12(1−ν2)], whereE is the Young’s modulus,
ν is the Poisson’s ratio, andh is the plate thickness. Each force
Fr(x,t) represents the force applied by the plate to therth array
and is given by

Fr(x,t) = Z(r)(x)V (x,t) (2)

whereV (x,t) is the plate velocity, related to the displacement by
V (x,t) = ∂W (x,t)/∂t. The distributed impedance of all attach-
ments in therth array is defined as

Z(r)(x) = Zr

∞∑
n=−∞

δ(x−ndr). (3)

Writing the time-harmonic plate velocity as

V (x,t) = Re{v(x)exp[−iωt)]} (4)

and substituting this into equation 1, one obtains an ordinary dif-
ferential equation involving infinite sums over the attachment po-
sitions of all arrays. Material damping is included by allowing
the Young’s modulus to become complex valued, so thatE is re-
placed byE0(1 − iη), whereη is the material loss factor. The
array impedances are implicitly assumed to be functions ofω.
One proceeds by taking the spatial Fourier transform, defined by

ṽ(k) =
∫ ∞

−∞
v(x)e−ikx dx, (5)

of the equation of motion. This transforms the summations over
positions to summations over wavenumbers. Invoking Poisson’s
summation formula, equation 1 becomes

ṽ(k) = −Ỹ (k)
R∑

r=1

ZrṽΣ,r(k) (6)

where the summed plate velocities are

ṽΣ,r(k) =
1
dr

∞∑
n=−∞

ṽ(k −nkd,r), (7)

the spacing wavenumber is

kd,r =
2π

dr
, (8)

the wavenumber admittance of the plate is

Ỹ (k) =
1

−imω

(
k4

f

k4
f −k4

)
, (9)
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and the flexural wavelength is

kf =
(

mω2

D

)1/4

(10)

After many algebraic manipulations, equation 6 is cast into
the form

Q(k)ṽ(k) = 0, (11)

where the dispersion functionQ(k) is given as

Q(k) =
R∏

r=1

[1+ZrỸΣ,r(k)] (12)

and the summed admittancesỸΣ,r are defined by

ỸΣ,r(k) =
1
dr

∞∑
n=−∞

Ỹr(k −nkd,r). (13)

EachỸr represents the wavenumber admittance of the plate with
the first(r −1) arrays attached. Therth admittance satisfies the
recursion relation,

Ỹr(k) =




Ỹ (k) for r = 1
Ỹr−1(k)

1+Zr−1ỸΣ,r−1(k)
for r = 2, . . . ,R.

(14)

Requiring a nontrivial solution for̃v(k) leads to the dispersion
relation

Q(k) = 0. (15)

The roots of the latter that lie in the strip defined by0 < <(k) <
2π/dr and=(k) > 0 are the Floquet wavenumbers of the plate
withR arrays. Values ofk that satisfy this equation are the Floquet
wavenumbers. The particular form ofQ(k) given in equation 12
has an interesting interpretation. Therth term in the product
represents the dispersion relation of the plate with the firstr arrays
attached.

Gueorguievet al (1999) have shown that the dispersion rela-
tion for the plate with the firstr arrays attached transforms into a
quadratic equation given by

cos2(kdr)+arcos(kdr)+ br = 0, (16)

wherear andbr are given inAppendixA. These constants depend
on the Floquet wavenumbers of the plate with only the first(r −
1) arrays attached. Note that the Floquet wavenumbers of the
bare plate are simply the plate’s flexural wavenumbers,kf and
ikf . One computes the wavenumbers of a plate withR arrays
by sequentially evaluating equation 16 for each array, beginning
with r = 1 and ending withr = R.

A parenthetical superscript on the Floquet wavenumbers shall
be used to denote the number of attached arrays and a subscript
of either 1 or 2 shall refer to one of the two types of Floquet
waves. The first type has a small imaginary part in the pass bands
of the structure, and is hence referred to as thepropagating Flo-
quet wave. It is analogous to the flexural wave on a bare plate.
The second type has a large imaginary part at any frequency and
is analogous to the evanescent wave on a bare plate, which is
confined near concentrated loadings or discontinuities.

3 DISPERSION RELATIONS FOR ARRAYS WITH
SMALL SPACINGS
In this section, an expression is derived for the wavenumber

impedance of an equivalent plate whose dynamics approximate
those of a plate with arrays of closely spaced attachments. For
clarity, consider a structure withR arrays and first take the limit
as the smallest array spacing,d1, approaches zero. The relative
impedance, defined by

Zrel
r =

Zr

dr
, (17)

shall be held constant in taking the limit of small array spacing.
Physically, this amounts to fixing the total impedance attached to
a finite length structure so that the impedance of each attachment
must decrease if the spacing is decreased.

It shall be expedient to return to the equation of motion in
the spatial domain. From equation 3, the impedance of the first
(r = 1) array is written as

Z(1)(x) = Zrel
1 d1

∞∑
n=−∞

δ(x−nd1). (18)

Fixing Zrel
1 and taking the limit asd1 → 0 gives

lim
d1→0

Z(1) = Zrel
1

∫ ∞

−∞
δ(x−η)dη = Zrel

1 (19)

The collective impedanceZ(1)(x) approaches a constant when
the corresponding spacingd1 approaches0.
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After substituting equation 19 into equation 1 and taking the
Fourier transform, the equation of motion becomes

Z̃(k)ṽ(k) = −Zrel
1 ṽ(k)−

R∑
r=2

Zq

∞∑
m=−∞

ṽ(k −mkd,r), (20)

where Z̃(k) = Ỹ −1(k) defines the plate’s wavenumber
impedance. Equation equation 20 can be cast in the simpler form

Z̃eq(k)ṽ(k) = −
R∑

r=2

Zr

∞∑
m=−∞

ṽ(k −mkd,r), (21)

in which

Z̃eq(k) = Z̃(k)+Zrel
1 (22)

Upon analogously defining the equivalent wavenumber ad-
mittance asYeq(k) = Z−1

eq (k), the governing wavenumber equa-
tion becomes

ṽ(k) = −Ỹeq(k)
R∑

r=2

ZrṽΣ,r(k), (23)

which is identical to equation 6 except that theyr = 1 array is
removed and the plate admittanceỸ (k) is replaced by the equiv-
alent admittancẽYeq(k). In summary, theR-array problem is
transformed into an(R − 1)-array problem where ther > 1 ar-
rays are attached to a fictitious plate with an equivalent admittance
Yeq(k). Ther = 1 array has been effectively homogenized into
the plate.

If we require all array spacings to approach zero, then the
dispersion relation becomes

Z̃(k)+
R∑

r=1

Zr
rel = 0 (24)

The solutions of the latter represent the Floquet wavenumbers of
the homogenized array, given by

k
(R)
1 = kf

(
1+

R∑
r=1

ζr

)1/4

(25)

and

k
(R)
2 = ikf

(
1+

R∑
r=1

ζr

)1/4

, (26)

where a normalized impedance has been defined as

ζr =
Zr

−iωmdr
. (27)

Physically, the denominator ofζ represents the impedance due to
the mass of a section of plate whose length is equal to the spacing
between attachments. If each attachment is modeled as a mass
then the normalized impedances are positive real numbers.

4 CONDITIONS FOR HOMOGENIZING ARRAYS WITH
SMALL SPACINGS
Physically, one expects that an array could be homogenized

into the plate when the array spacing is small compared to a char-
acteristic response scale of the plate. For example, homogeniza-
tion would be reasonable if the bare plate’s flexural wavelength,
λf , is much greater than the array spacing,λf � d1. One might
also expect that the homogenization condition would involve the
impedances of the attachments. For example, arrays with small
impedances would be more accurately homogenized than large
impedance arrays for a fixed frequency.

These expectations may be mathematically qualified by de-
riving approximations to the Floquet wavenumbers for small val-
ues ofkfd1. In this section, this investigation is conducted by
solving equation 16 for the Floquet wavenumbers and expanding
them in a Taylor series aboutkfd1 = 0. Due to the complex-
ity of the expressions for the Floquet wavenumbers, this analysis
was verified by a symbolic manipulation software. First, let us
consider a simple structure consisting of a plate with one array
of attachments (R = 1). The Taylor series expansions of the two
Floquet wavenumbers are

k
(1)
1 ∼ kf (1+ ζ1)

1/4 +
(ζ1)2

2880d1(1+ ζ1)3/4 (kfd1)5+

ζ1
2

12096d1(1+ ζ1)1/4 (kfd1)7 +O[(kfd1)9]
(28)

and

k
(1)
2 ∼ ikf (1+ ζ1)

1/4 +
iζ1

2

2880d1(1+ ζ1)3/4 (kfd1)5−
iζ1

2

12096d1(1+ ζ1)1/4 (kfd1)7 +O[(kfd1)9]
(29)

One immediately recognized the leading terms of these expan-
sions as the homogenized wavenumbers given in equations 25
and 26 withR = 1. The remaining higher-order terms repre-
sent errors in the homogenization. Recognizing that the second
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term contributes most to the error, the following homogenization
condition is arrived at:

|kfd1| � 7.33

∣∣∣∣∣ (1+ ζ1)
1/4

√
ζ1

∣∣∣∣∣ (30)

Since the right hand side of Equation 30 is decreasing with in-
creasingζ1, it follows that increasing the relative impedance re-
duces the frequency range in which the array can be homogenized.
In fact, in the limit asζ1 → ∞, no homogenization is possible.
This makes physical sense as the limit corresponds to pinning the
plate at the attachment points. As an engineering measure of the
accuracy of the homogenization, equation 30 may be cast in the
form

|kfd1| ≤ 7.33C1

∣∣∣∣∣ (1+ ζ1)
1/4

√
ζ1

∣∣∣∣∣ . (31)

For our example involving masses attached to lightly damped
plates, choosingC1 = 0.15 gave errors in the Floquet wavenum-
bers of less than one percent.

Similar results were obtained for a plate with two arrays of
attachments (R = 2), where both arrays are homogenized. The
Floquet wavenumbers for this case are

k
(2)
1 ∼ kf (1+ ζ1 + ζ2)

1/4 +
ζ1

2 +2ζ1ζ2 +n2
4ζ2

2

2880d1 (1+ ζ1 + ζ2)
3/4 (kfd1)5+

ζ1
2 +2ζ1ζ2 +n2

6ζ2
2

12096d1(1+ ζ1 + ζ2)1/4 (kfd1)7 +O[(kfd1)9]

(32)
and

k
(2)
2 ∼ ikf (1+ ζ1 + ζ2)

1/4 − i
ζ1

2 +2ζ1ζ2 +n2
4ζ2

2

2880d1 (1+ ζ1 + ζ2)
3/4 (kfd1)5−

i
ζ1

2 +2ζ1ζ2 +n2
6ζ2

2

12096d1(1+ ζ1 + ζ2)1/4 (kfd1)7 +O[(kfd1)9]

(33)
wheren2 denotes the spacing ratiod2/d1.

The leading terms of these expansions will dominate the sec-
ond terms if

|kfd1| � 7.33

∣∣∣∣∣∣
(1+ ζ1 + ζ2)

1/4(
ζ1

2 +2ζ1ζ2 +n2
4ζ2

2)1/4

∣∣∣∣∣∣ (34)

One observes from this condition that an increase of the spacing
ratio n2 or the relative impedancesζ1,2 would reduce the fre-
quency range over which homogenization is possible. As before,

equation 34 may be cast in the form

|kfd1| ≤ 7.33C2

∣∣∣∣∣∣
(1+ ζ1 + ζ2)

1/4(
ζ1

2 +2ζ1ζ2 +n2
4ζ2

2)1/4

∣∣∣∣∣∣ . (35)

For our example involving masses attached to lightly damped
plates, choosingC2 = 0.12 gave errors in the Floquet wavenum-
bers of less than one percent.

5 DISPERSION RELATIONS FOR ARRAYS WITH
LARGE SPACINGS
In this section, the limit of large array spacing is examined.

The analysis presented here assumes thatdR, which is the largest
array spacing, is larger than any other spatial scale in the prob-
lem. For this case, one finds that theRth array may be entirely
neglected in analyzing the wave dispersions. The physical reason
for this is that the Floquet waves attenuate and are therefore not
able to propagate the large distances between attachments in the
Rth array. At the end of this section, the results will be generalized
to the case where theR andR−1 arrays have large spacings.

First, we define a multiple of theRth array’s spacing
wavenumber as

ξn = nkd,R = n
2π

dR
(36)

and rewrite the spacing wavenumber as a difference between mul-
tiples,

∆ξ = ξn+1 − ξn = kd,R. (37)

Substituting these into equation 13 yields

ỸΣ,R(k) =
∆ξ

2π

∞∑
n=−∞

ỸR(k − ξn) (38)

Taking the limit asdR → ∞ gives

lim
dR→∞

ỸΣ,R(k) =
1
2π

∫ ∞

−∞
ỸR(ξ)dξ = YR. (39)

As shown, this integral may be interpreted as an inverse Fourier
transform ofỸR evaluated atx = 0. Specifically,YR represents
the drive-point spatial impedance of the plate atx = 0 with the

6 Copyright  1999 by ASME



first (R−1) arrays attached. Introducing this limit in equation 12
results in

Q(k) = (1+ZRYR)
R−1∏
r=1

[1+ZrỸΣ,r(k)] (40)

Since the term preceding the product is independent of wavenum-
ber, the dispersion relation reduces to that of the plate with the
first (R−1) arrays attached.

Analogously, allowing bothdR−1 anddR to approach infin-
ity, one can show that the dispersion relation function becomes

Q(k) = (1+ZRYR)(1+ZR−1YR−1)
R−2∏
r=1

[1+ZrỸΣ,r(k)]

(41)
whereYR−1 is the drive-point mobility of the plate with the first
R−2 arrays attached. This result extends in the obvious way to
any number of arrays whose spacings approach infinity.

6 NUMERICAL EXAMPLES
In this section, the limiting cases presented in the previous

sections will be illustrated for the case of an elastic beam with
two and three arrays of line attachments. The substructures in all
arrays will be taken as line masses with the mass per unit length
equal to the mass in a unit square of plate, so that

Zr = −iωmh. (42)

The wavenumber of the propagating Floquet wave will be plotted
versus a normalized frequency defined by

Ω = ωd2
R

√
ρh/D. (43)

The plate parameters corresponding to steel areE = 2×1011 Pa,
ρ = 7800 kg/m3, ν = 0.3, andη = 0.01. The plate thickness is
h = 1 cm. The width of the plate in they coordinate is assumed
small enough to allow the plate to be treated as a beam, which is
accomplished by artificially setting the Poisson’s ratio to zero in
the bending rigidity,D.

The first two examples will illustrate the approximations and
associated errors involved in truncating the Taylor series expan-
sions of Floquet wavenumbers given in Section 4. In the first
example, we consider a plate with a single array having spacing
d1 = 1. The real and imaginary parts of the propagating Floquet
wavenumbers are shown in Figures 2 and 3. Also shown in these
figures is the homogenization given by the leading term in equa-
tion 28. We find that the condition given in equation 31 is satisfied
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Figure 2. Real part of the propagating Floquet wavenumber for a structure

with one array having a spacing d1 = 1m.
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Figure 3. Imaginary part of the propagating Floquet wavenumber for a

structure with one array having a spacing d1 = 1m.

whenΩ < Ωbound, whereΩbound = 2.9 for this example. Below
this bounding frequency, the wavenumber is well-approximated
by the homogenized result.

The second example involves a structure with two arrays hav-
ing spacingsd1 = 1 andd2 = 2. The real and imaginary parts of
the propagating Floquet wavenumber are given in Figures 4 and 5.
Also shown is the homogenization obtained by only retaining the
leading-order term in equation 33. Equation 35 is satisfied when
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with two arrays having spacings d1 = 1m and d2 = 2m.
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Figure 5. Imaginary part of the propagating Floquet wavenumber for a

structure with two arrays having spacingsd1 = 1m and d2 = 2m.

Ω < Ωbound, whereΩbound = 4. Again, excellent agreement is
found below this bounding frequency.

A more complex situation arises if one wishes to homoge-
nize a subset of the arrays. In equation 23, it was shown that
the first array (r = 1) could be homogenized into the plate while
the other arrays (r ≥ 2) were treated exactly. Unfortunately, sim-
ple expressions for the associated errors are difficult to obtain as
one must track the approximations introduced by homogenizing
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Figure 6. Real part of the propagating Floquet wavenumber for a structure

with three arrays having spacings d1 = 1m, d2 = 6m, and d3 = 12m.

the first array through the equations describing the other arrays.
Nonetheless, we present an example here to illustrate that such an
approach has a reasonable frequency range of applicability. Three
arrays are attached to a plate with spacingsd1 = 1m, d2 = 6m,
andd3 = 12m. The real and imaginary parts of the propagating
Floquet wavenumber, computed by equation 16, are plotted in
Figures 6 and 7. Also plotted is an approximation in which the
first array (r = 1) has been homogenized into the plate according
to equation 23. As in the previous examples, good agreement is
obtained at low frequencies.

The large array-spacing limit is illustrated in Figure 8. In this
figure, the imaginary part of the Floquet wavenumber is plotted
for a plate with two arrays having spacingsd1 = 1 andd2 = 6. The
plot consists of a sequence of small stop bands at low frequency
and a broad stop band centered atΩ ∼ 275. The small stop bands
are caused by the large-spacing array (r = 2) and the large stop
band is caused by the small-spacing array (r = 1). Taking the
limit of large spacing would lead one to omit the large-spacing
array (r = 2) from consideration. This result is labeled as the “one
array” curve in the plot and agrees with the “two array” result at
higher frequencies.

7 CONCLUSIONS
In this paper, two limiting cases of array spacing have been

examined. In the case of small array spacing, an expression was
derived that allows one to homogenize the array into the plate.
For large array spacings, it was demonstrated that the array may
be neglected in the analysis of wave dispersions. Although these
results were obtained as limiting cases, it has been shown through
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Figure 7. Imaginary part of the propagating Floquet wavenumber for a

structure with three arrays having spacings d1 = 1m, d2 = 6m, and

d3 = 12m.
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Figure 8. Imaginary part of the propagating Floquet wave in a plate with

one (d2 = 6) and two arrays of line attachments (d1 = 1 and d2 = 6).

The one-array case corresponds to the large spacing limit.

examples that these cases apply to practical structures with finite
array spacings.
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A CONSTANTS IN THE DISPERSION RELATION
The constantsar andbr appearing in equation 16 are related

to the Floquet wavenumbers of the plate with the firstr−1 arrays,

ar = −cos(k1
(r−1))− cos(k2

(r−1)dr)

− ZrArsin(k1
(r−1)dr)−ZrBrsin(k2

(r−1)dr) (44)

and

br = cos(k(r−1)
1 dr)cos(k(r−1)

2 dr)

+ ZrArsin(k(r−1)
1 dr)cos(k(r−1)

2 dr)

+ ZrBrsin(k(r−1)
2 dr)cos(k(r−1)

1 dr) (45)

whereAr andBr are also related to the Floquet wavenumbers of
the plate with firstr −1 arrays and are given as

Ar =




kf

4imω
if r = 1

ỸΣ,r−1(k
(r−1)
1 )

Zrel
r−1Ỹ

′
Σ,r−1(k

(r−1)
1 )

if r = 2, . . . ,R
(46)

and

Bp =




kf

4mω
if r = 1

ỸΣ,r−1(k
(r−1)
2 )

Zrel
r−1Ỹ

′
Σ,r−1(k

(r−1)
2 )

if r = 2, . . . ,R
. (47)
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